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Abstract

A sample of about 1.4 million hadronic Z decays, selected among the data
recorded by the DELPHI detector at LEP during 1994, was used to measure for
the �rst time the momentum spectra of K+, K0, p, � and their antiparticles in
gluon and quark jets. As observed for inclusive charged particles, the production
spectra of identi�ed particles were found to be softer in gluon jets than in quark
jets, with a higher total multiplicity.
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1 Introduction

In QuantumChromodynamics (QCD), quarks and gluons carry di�erent colour charges
and therefore have di�erent probabilities of emitting additional gluons. Hence, jets orig-
inating from the fragmentation of energetic quarks and gluons are expected to show
di�erences in their particle multiplicity, energy spectrum, and angular distribution.

The LEP detectors can select gluon jets in b�bg events by tagging the b quarks, using
selections based on the presence of particles with large impact parameters. This technique
has allowed conclusive measurements of the above di�erences in behaviour of quark and
gluon jets from LEP data (see for example Refs. [1{3], and Ref. [4] for recent reviews).
From �rst order QCD and in the asymptotic limit, the hadron multiplicity is expected
to be higher in gluon jets than in quark jets by the factor CA=CF = 9=4, but including
higher order terms and energy conservation leads to lower values [5]. The experimental
results also point to lower values, ' 1:5 or below and typically found to be about 1.25,
that depend on how the jets are de�ned [1{3] and increase with energy [3].

No systematic comparisons of identi�ed particle yields in quark and gluon jets have
yet been published, although a higher �0 rate in gluon jets has been reported recently [6].
The DELPHI detector at LEP, equipped with powerful systems for particle identi�cation
[7,8], can provide information on the spectra of identi�ed particles in quark and gluon jets,
thus testing the predictions of QCD based models in �ner detail, and possibly providing
hints for better separating quark jets from gluon jets.

The study of the spectra of identi�ed particles (K+, K0, proton and �)y in quark
jets and gluon jets from selected symmetric 3-jet topologies is the subject of this paper.
The paper is organized as follows. Section 2 describes the hadronic event selection,
the quark/gluon separation, and the particle identi�cation. The experimental results
are presented and discussed in comparison with the predictions of models in Section 3.
Finally the conclusions are presented in Section 4.

2 Experimental Technique and Event Sample

The DELPHI detector and its performance are described in [7,8].

2.1 Event selections

A sample of hadronic events was selected by requiring 5 or more charged particles
with a combined energy of at least 12% of the beam energy. A charged particle was
required to have a momentum, p, of more than 400 MeV=c, a track length of at least 30
cm, and a polar angle to the beam direction, �, between 20� and 160� [8]. The selection
e�ciency was about 95% for hadronic Z decays. The data sample passing the hadronic
criteria contained 1,393,000 events with a small contamination (< 0:7%) arising from
�+�� pairs, beam-gas scattering and  interactions [8]. Only the data collected during
1994 were used in this analysis, in order to pro�t from the full operation of the main
particle identi�cation detector, the RICH [8], and from the Vertex Detector of DELPHI.

The inuence of the detector on the analysis was studied with the full DELPHI sim-
ulation program, DELSIM [9]. Events generated with the JETSET 7.3 Parton Shower
(PS) model [10], with parameters tuned by DELPHI [11], were passed through DEL-
SIM and processed with the same reconstruction and analysis programs as the real data.

yHere and in the following, unless otherwise stated, antiparticles are included as well.
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Simulations based on JETSET 7.4 PS and HERWIG 5.8 [12] with parameters tuned by
DELPHI [11] were also used.

Three-jet events were selected by means of the k? (or Durham) jet algorithm [13]. In
this algorithm, a jet resolution variable yij is de�ned for all pairs of particles:

yij =
2 �min(E2

i ; E
2
j ) � (1 � cos�ij)

E2
vis

(1)

where �ij is the angle between the two particles, Ei (Ej) is the particle energy (obtained
in our case from the particle momenta by assuming the pion mass for the charged and
massless neutrals except in the case of a V 0, for which the mass of the V 0 itself was used),
and Evis is the sum of all particle energies observed in the event. The particle pair with
the smallest yij, if its yij is smaller than a cut-o� value ycut, is replaced by a pseudo-
particle with four-momentum equal to the sum of the four-momenta of particles i and j.
This procedure is repeated until all yij are greater than ycut. At the end of the procedure,
the remaining (pseudo)particles are the jets. The value used for the cut-o�, ycut = 0:015,
was optimized using the JETSET 7.3 PS model, by maximizing the statistics available
and the quark/gluon purity attained for the three-jet event samples [3], thus allowing
a reliable comparison with perturbative QCD. Both charged and neutral particles were
used in the jet reconstruction algorithm. The number of 3-jet events selected was 359084.

Two samples of 3-jet events with di�erent geometries were used:

� \Y events", two-fold symmetrical events with each of the two angles �2 and �3 (see
Fig. 1) in the interval between 135� and 165�: only the two closest jets (jets 2 and 3
in Fig. 1) were used in the analysis, and the condition j�2 � �3j � 15� was imposed
in order to limit the energy di�erence between them.

θ2

θ3

θ1

Jet 1

Jet 3

Jet 2

Y events

θ2

θ3

θ1

Jet 1

Jet 3

Jet 2

Mercedes events

Figure 1: Geometry of Y and Mercedes type events.

� \Mercedes events", three-fold symmetrical events with each of the three angles �1,
�2 and �3 in Fig. 1 in the interval between 100� and 140�. All three jets were used
in the analysis.

In both cases, all three jets were required to have polar angles to the beam direction
between 30� and 150�, and the planarity condition �1 + �2 + �3 � 355� was imposed.

The advantage of using Mercedes and Y events in this way is that the gluon and at
least one quark jet have about the same energy, thus removing phase space e�ects. The
disadvantages are the limited range of parton energies spanned and the severely limited
statistics. The numbers of 3-jet events in these Mercedes and Y samples were equal to
9805 and 59166 respectively.
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The energies of the jets were calculated from the jet directions and the angles between
them. Assuming massless kinematics, the jet energies can be expressed as:

pcalcj = Ecalc
j =

sin�j

sin�1 + sin�2 + sin�3

p
s; j = 1; 2; 3 (2)

where �j is the inter-jet angle as de�ned in Fig. 1. Studies using a full simulation of
the DELPHI detector showed [3] that, for the whole available range of jet energies, Ecalc

j

gives a better representation of the true jet energy than the reconstructed (or visible) jet
energy does. The use of expression (2) corrects for the energy shift towards low values
due to particle loss, and improves the energy resolution from about � 2.5 GeV to about
� 1 GeV.

2.2 Quark/gluon Separation

The probability of producing b-quark pairs inside gluon jets is expected to be small [14].
Gluon jets can therefore be collected from a sample of reconstructed b�bg three-jet events
by directly identifying the two quark jets as originating from b quarks. The experimental
techniques employed in the present analysis detect b-jets e�ciently, enable reasonably
high gluon jet purities to be attained, and thus allow the study of a sample of gluon jets
containing only a small background.

The b-jet tagging was done after requiring the probability PE [8,15], for the hypothesis
that none of the charged particles with positive impact parameter in the event came from
a secondary vertex, to be smaller than 2� 10�2. The b�b purity attained was about 71.2%
and 69.5% in the Mercedes and Y samples, respectively.

In the Mercedes events, the gluon candidate was then selected as the jet with the
largest PJ , provided it had PJ above 0.1 and the two other jets had PJ below 0.1, where
PJ is calculated like PE but using only the charged particles in a given jet.

In Y events, the gluon candidate was selected as the jet with largest PJ , provided it
was greater than 0.1. If this was the most isolated jet (jet 1 in Fig. 1 left), the event was
discarded. It was required in addition that the nearest jet had PJ � 0:1.

After b tagging, the numbers of 3-jet events in the Mercedes and Y samples were equal
to 1090 and 7017 respectively.

The average and root-mean-square spread of the energies of the jets selected as b and
gluon jets are indicated in table 1, for both the Mercedes and Y events.

Class gluon b

Mercedes Events
Average energy (GeV) 29.5 30.9
RMS spread (GeV) 3.4 3.2

Y Events
Average energy (GeV) 23.5 25.0
RMS spread (GeV) 3.3 3.2

Table 1: Averages and root-mean-square spreads of the energies of the b and gluon jets
selected in the Mercedes and Y events.

Three classes of jets were considered in the following analysis:

� a g-enriched class, containing the gluon candidates selected as just described;
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� a b-enriched class, containing the two jets not selected for the g-enriched class in the
Mercedes sample, and the non-gluon jet among jet 2 and jet 3 in the Y sample;

� a reference class, containing all the jets in the Mercedes events, and all jets 2 and 3
in the Y events, before b tagging.

The compositions of these samples were calculated using events generated with the
JETSET 7.3 PS model, which were subsequently passed through DELSIM, to simulate
detector e�ects, and the jets were then reconstructed. In each event, the generated
particles were clustered into the same number of jets as had been reconstructed (three in
the selected samples). Two di�erent methods were then used to assign the reconstructed
jets to the generated jets :

� Generated heavy hadrons were assigned to the generated jets, and the reconstructed
jet which had the largest angle to the generated heavy hadron jets was assumed to
be the gluon induced jet.

� Partons were clustered into three jets, and the reconstructed jets were associated to
the parton jet closest in angle.

The two methods were in good agreement.
The calculated compositions of the three jet classes determined using these procedures

are summarized in table 2 for Mercedes and Y events. The gluon fractions in the reference
samples are easily understood, since by symmetrization we expect 1/3 of the jets in
Mercedes events to be gluon, and nearly 1/2 in Y events.

Class g b udsc

Mercedes Events

g-enriched 0.828 0.069 0.102

b-enriched 0.076 0.774 0.148

Reference 0.334 0.143 0.521

Y Events

g-enriched 0.837 0.068 0.093

b-enriched 0.104 0.720 0.174

Reference 0.462 0.110 0.426

Table 2: Fractional compositions of the three jet classes for Mercedes and Y events.

2.3 Identi�cation of Final State Particles

TheK+ and protons were tagged using the Cherenkov angle measurement in the RICH
detector and the ionization energy loss (dE=dx) in the TPC. The dE=dx information was
used to identify K+ for momenta below 0.7 GeV=c and protons below 0.9 GeV=c, where
no RICH information is available. At higher momenta, due to the better resolution and
better separation between the expectation curves, the tagging performance of the RICH
is superior, so the tagging was performed mainly using the RICH.

The RICH analysis was restricted to the barrel RICH region (41� � � � 139�). The
RICH hadron identi�cation was based on three standard software packages, `RICFIX',
`RIBMEAN' and `NEWTAG' [16]. RICFIX corrects the real and simulated RICH data
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for detector related e�ects (such as slight uctuations in pressures and refractive indices,
background arising from photon feedback, cross-talk between readout strips and wires,
�-rays, track ionization photoelectrons, etc.) in order to optimise the performance and
to ensure good agreement between data and simulation. RIBMEAN then estimates the
Cherenkov angles in the liquid and gas radiators by applying a clustering algorithm to the
detected Cherenkov photons, and simultaneously assigns a quality ag to each charged
particle (track) passing through the RICH. Finally NEWTAG performs the �, K+ and
proton tagging. Basically, a particle is tagged if its measured Cherenkov angle is within
2.5 standard deviations of the prediction of the given mass hypothesis and at least 1 (loose
tag), 2 (standard tag) or 3 (tight tag) standard deviations from the nearest neighbour
hypothesis. The exact cuts depend on the particle type and momentum, in order to take
into account the varying separation quality of the detectors involved.

In the momentum range below 0.9 GeV=c, the clearly separated bands corresponding
to electron, pion, kaon, and proton in the plot of dE=dx versus momentum were used
for identi�cation (muons can not be distinguished from pions). Detailed calibration was
performed as described in [17].

The e�ciency averaged over the momentum spectrum was estimated from the full
detector simulation to be 56% (46%) with a purity of 75% (92%) for K+ (proton), in the
sample of events selected for this analysis. Fig. 2 shows the e�ciency and contamination
as a function of momentum for the K+ and protons selected.

The K0
S and � candidates were detected by their decay in ight into �+�� and p��

respectively. Candidates were found by considering all pairs of oppositely charged par-
ticles. The vertex de�ned by each such pair was determined by minimising the �2 for
the hypothesis of a common vertex, and the track parameters were re�tted to the com-
mon vertex. The selection criteria were the \tight" ones described in [8]. The average
detection e�ciency of this procedure is about 36% for K0

S ! �+�� and about 28% for �
! p�� in multihadronic events (Fig. 2). The backgrounds under the invariant mass peaks
were subtracted, separately for each momentum bin, by linear interpolation between two
side-bands in invariant mass: these were the regions between 0.40 and 0.45 GeV =c2 and
between 0.55 and 0.60 GeV =c2 for the K0

S , and the regions between 1.08 and 1.10 GeV =c2

and between 1.14 and 1.18 GeV =c2 for the �.

3 Analysis and Results

The production of identi�ed particles in the �nal state was studied in four momentum
bins for K0 and �, and in six momentumbins for charged kaons and protons, as indicated
in table 3.

Particle K0, �

Momentum bins bin 1 bin 2 bin 3 bin 4

(GeV=c) 0.5-2.0 2.0-5.0 5.0-10.0 10.0-25.0

Particle K+, proton

Momentum bins bin 1 bin 2 bin 3 bin 4 bin 5 bin 6

(GeV=c) 0.3-0.5 0.5-0.9 0.9-2.3 2.3-4.5 4.5-9.0 9.0-25.0

Table 3: Momentum bins used for the study of identi�ed particles.
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Figure 2: E�ciency (squares) and contamination (open circles) as a function of momen-
tum for Y events and Mercedes events for di�erent types of particle: the histograms in the
1st, 2nd, 3rd and 4th columns correspond to particle types p, K+, � and K0 respectively.
The 1st and 2nd rows of histograms refer to Y-type events, the 1st row for gluon jets and

the 2nd row for quark jets. The 3rd row corresponds to gluon jets in Mercedes type events
and the 4th row to quarks jets in Mercedes type events.
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The ratios of the momentum distributions, not yet corrected for the contamination of
the di�erent jet classes or for the reconstruction e�ciency of the particles in those jets,
are shown in Fig. 3 for the g-enriched class relative to the reference class, together with
the same ratios for charged particles. The simulation sample used consisted of about
4:6 � 106 hadronic Z decays generated with the JETSET 7.3 PS model, with JETSET 7.4
PS and with HERWIG 5.8. The spectra of identi�ed particles in the class enriched in
gluon jets appear to be softer than the corresponding spectra in the reference class.

The e�ects of the contaminations in the jet classes were unfolded by applying an alge-
braic correction method to the momentum distributions. The method uses the composi-
tions of the classes of jets in table 2 as the only input from simulation. If Mg�enriched(mi),
Mb�enriched(mi), and Mreference(mi) respectively represent the momentum distributions
constructed from the g-enriched class, the b-enriched class, and the reference class, where
mi is the content of bin i, then

Mj(mi) = Pg(j) �G(mi) + Pb(j) �B(mi) + Pq(j) �Q(mi) (3)

where G(mi), B(mi) and Q(mi) are the distributions for pure g, pure b and pure q = udsc

jets respectively, with Pg(j), Pb(j), and Pq(j) being the fractions of the jets in class j
(j= g-enriched, b-enriched and reference) which are pure g, b, and q = udsc respectively,
as given in table 2. These equations can be solved to extract the pure g, b, and q = udsc

contributions.
Only two pure classes were extracted in the present analysis: the class of pure gluons

and a pure quark class including all quarks (q = udscb) in the proportions predicted by
the standard model for Z decay into quarks. This q = udscb class was obtained from
the compositions of udsc and b quarks in the enriched classes and the reference class of
table 2, neglecting the c-enrichment in the b-enriched class: this was however accounted
for later, in the systematic uncertainties.

The reconstruction e�ciencies were determined, using the JETSET 7.3 PS model, by
comparing the momentum distributions of the identi�ed particles in the two pure classes
of jets extracted from the simulated events with those extracted from the generated ones.

The ratios obtained, after unfolding the contamination of the jet classes and correcting
for the reconstruction e�ciencies of the particles in the pure jet classes, are shown in
Fig. 4, together with the corresponding ratios for charged particles.

The ratio of the charged multiplicities in gluon jets relative to quark jets averaged over
the momentum spectrum was found to be rch = 1:22 � 0:01 and rch = 1:30 � 0:03 for Y
and Mercedes events respectively, consistent with the dependence of this ratio on the jet
energy observed previously [3].

Normalized ratios, R0
X(p), were then de�ned by :

R0
X(p) =

rX(p)

rch(p)
; (4)

where rX(p) is the fully corrected ratio of the multiplicity measured in gluon jets relative
to quark jets as a function of the momentum p for the identi�ed particle X (X =K0, �,
K+, proton), and rch(p) is the corresponding ratio for all charged particles.

The normalized ratios shown in Fig. 5 are computed from the ratios in Fig. 4. The
normalized ratios integrated over the momentum spectrum, R0

X, are listed in table 4, and
compared with the predictions from the simulation.

The systematic uncertainties on these ratios were estimated by summing in quadrature
the following sources.
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R0
X Measured JETSET 7.3 PS JETSET 7.4 PS HERWIG 5.8

Y Events

R0
p 1.12 � 0.11 � 0.04 1.36�0.03 1.53 �0.05 0.94�0.02

R0
K+ 0.93 � 0.04 � 0.02 0.83�0.01 0.84 �0.01 0.70�0.01

R0
� 1.40 � 0.30 � 0.23 1.40�0.06 1.53 �0.07 1.02�0.03

R0
K0 1.13 � 0.09 � 0.13 0.94�0.02 0.98 �0.02 0.93�0.01

Mercedes Events

R0
p 1.25 � 0.22 � 0.05 1.43�0.05 1.35 �0.06 1.07�0.04

R0
K+ 0.92 � 0.09 � 0.03 0.82�0.02 0.84 �0.02 0.68�0.02

Table 4: Normalized ratios R0
X (see text) integrated over the momentum spectrum and

compared to the predictions from the Monte Carlo simulations. The �rst error quoted is
statistical, the second is systematic. The breakdown of the systematic error is given in
Table 5.

1. An overall uncertainty of �5% was used for the K+ and proton identi�cation e�-
ciency and purity, deduced from the simulation by comparing the results from loose,
standard and tight tagging for di�erent track quality samples. For K0 and �, this
systematic uncertainty was taken as �15%.

2. The uncertainties on the avour compositions in table 2 were found by assuming that
all the c quark jets in the g-enriched and b-enriched classes were in fact b quark jets.
In addition, the gluon jet purity was varied by 5% in the Y and Mercedes samples.
The larger of the two variations was taken as the estimator of the systematic e�ects.

3. The e�ect of neglecting the c-enrichment in the b-enriched class when unfolding
the e�ect of the contamination of the jet classes was estimated from the e�ects of
considering all c quarks as b's, and all uds quarks as b's. The half distance between
the two results was taken as a conservative estimate of this systematic uncertainty.

The e�ects of these sources of systematic uncertainty on the normalized ratios are
summarized in table 5.

It can be seen in Table 4 that all the R0
X values are consistent with unity, ie the ratios

of the average multiplicities in g jets and q jets for all identi�ed particles are consistent
with the corresponding ratios for charged particles. The value of R0

p in Y events is about
1.5 standard deviations higher than predicted by HERWIG 5.8, and 2 to 3 standard
deviations lower than predicted by JETSET. The value of R0

K+ is higher than predicted
by HERWIG 5.8 by about 5 standard deviations in Y events, and by about 2.5 standard
deviations in Mercedes events.

4 Conclusions

Based on a sample of about 1.4 million hadronic Z decays collected by the DELPHI
detector at LEP, the production spectra of identi�ed particles in jets initiated by gluons
and jets initiated by quarks, were analysed in order to search for possible di�erences
between gluons and quarks jets.
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R0
X Source 1 Source 2 Source 3 Total

Y Events

R0
p 0.011 0.010 0.038 0.041

R0
K+ 0.014 0.001 0.014 0.020

R0
� 0.139 0.130 0.123 0.227

R0
K0 0.112 0.074 0.008 0.134

Mercedes Events

R0
p 0.013 0.003 0.050 0.052

R0
K+ 0.014 0.020 0.015 0.029

Table 5: Systematic uncertainties on the integrated normalized ratios R0
X given in Table

4.

As observed for inclusive charged particles, the production spectrum of identi�ed par-
ticles was found to be softer in gluon jets compared to quark jets, with a higher total
multiplicity.

For all identi�ed particles, the ratio of the average multiplicity in g jets with respect
to q jets was found to be consistent with the same ratio measured for charged particles.
However, for protons, the ratio normalised to the ratio for charged particles in Y events is
about 1.5 standard deviations higher than predicted by HERWIG 5.8, and 2 to 3 standard
deviations lower than predicted by JETSET. For charged kaons, the normalised ratio is
higher than predicted by HERWIG 5.8 by about 5 standard deviations in Y events, and
by about 2.5 standard deviations in Mercedes events.
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Figure 3: Observed uncorrected ratios of the yields of (a) protons, (b) K+, (c) �, and
(d) K0 in the g-enriched class with respect to the reference class (black squares), for
Y events; (e) and (f) for Mercedes events correspond to (a) and (b) respectively. The

circles represent the observed ratios of the yields of charged particles in the g-enriched
class with respect to the reference class. The predictions from the JETSET 7.3 PS model
are shown as a dotted line, the full line represents the predictions from the JETSET 7.4
PS model, and the dash-dotted line represents the predictions from HERWIG 5.8.
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Figure 4: As Fig. 3, but for the fully corrected ratios of yields in gluon jets with respect
to quark jets (black squares), and the corresponding model predictions.
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Figure 5: As Fig. 3, but for the normalized ratio, R0
X(p) de�ned in the text (black

squares), and the corresponding model predictions.


