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Abstract

Correlations between pions from di�erent Ws in e+e�!W+W� events are
studied using data collected by the DELPHI detector at LEP running at a
centre-of-mass energy of 172 GeV in 1996. At the present level of statistics,
no enhancement of the correlation function above that expected from a pair of
uncorrelated Ws is observed at small values of the four-momentum di�erence
of the pions.
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1 Introduction

The fragmentation of quarks and gluons into hadrons is not calculable in QCD. Instead,
phenomenological models are used to describe the hadronization process [1]. The models
are built according to a probabilistic scheme, while the correct theory is an amplitude-
based quantum mechanical description.

For a pair of identical bosons, the quantum mechanical wave-function must be sym-
metric under particle exchange, which leads to an enhancement in the production of pairs
of bosons of the same charge and similar momenta. Such e�ects are observed in a va-
riety of processes [2] and are attributed to this Bose-Einstein symmetrization. Since a
symmetrization of amplitudes is normally absent in probabilistic descriptions, a crucial
question is whether or not Bose-Einstein correlations can be considered to be a small
correction to the probabilistic approach to the hadronization processes. If not, mod-
els formulated along a probabilistic approach would be far from reality [3]. There are
clear indications that Bose-Einstein e�ects play an increasingly large role with increas-
ing centre-of-mass energy and it is becoming di�cult to perform detailed analyses of
multiparticle production without a better understanding of this e�ect. An experimental
example is the distortion by Bose-Einstein correlations of the Breit-Wigner shape for
oppositely charged pions from the decay of broad resonances, observed at LEP1 energies
[4,5] (see also [6]).

Recently, it has also been conjectured that the measurement of the W mass at LEP2 by
reconstructing W pairs giving 4 jets is likely to be a�ected by Bose-Einstein correlations
between pions from di�erent Ws [3]. The typical separation in space and time between
the W+ and W� in e+e�!W+W� events is smaller than 0.1 fm at LEP2 energies, much
smaller than the source radii of 0.5 fm usually observed, and consequently pions from
di�erent Ws can be subject to Bose-Einstein symmetrization. A study of the correlations
between pions originating from di�erent Ws presents a unique possibility of measuring,
in a clean way, the Bose-Einstein e�ect between particles from di�erent, well-understood,
sources. Such measurements may help to provide a better understanding of the Bose-
Einstein phenomenon and, correspondingly, lead to improvement of existing models or
the need for new models to describe multiparticle production.

This paper describes an investigation of Bose-Einstein correlations between pions from
di�erent Ws in e+e�!W+W� events at a centre-of-mass energy of 172 GeV, using data
collected with the DELPHI detector [7,8] at LEP in 1996.

2 Analysis

To study the enhanced probability for emission of two identical bosons, the correlation
function R is de�ned as

R(p1; p2) =
P (p1; p2)

P0(p1; p2)
; (1)

where P (p1; p2) is the two-particle probability density, subject to Bose-Einstein sym-
metrization, pi is the four-momentum of particle i, and P0(p1; p2) is a reference two-
particle distribution which, ideally, resembles P (p1; p2) in all respects, apart from the
lack of Bose-Einstein symmetrization.

If f(x) is the space-time distribution of the source, R(p1; p2) takes the form

R(p1; p2) = 1 + jG[f(x)]j2;
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where G[f(x)] =
R
f(x)e�{(p1�p2)�xdx is the Fourier transform of f(x). Thus, by studying

the correlations between the momenta of pion pairs, one can determine the distribution
of the points of origin of the pions. Experimentally, it has been observed [9] that the
e�ect can be described in terms of the variable Q, de�ned by Q2 = M2(��)�4m2

�, where
M is the invariant mass of the two pions. The correlation function can then be written
as

R(Q) =
P (Q)

P0(Q)
; (2)

which is often parametrized by the function

R(Q) = 1 + �e�r
2Q2

; (3)

where the parameter r gives the source size and � the strength of the correlation between
the pions.

For the present analysis of correlations between like-sign pions from di�erent Ws, the
two-particle distribution of unlike-sign charged pions coming from di�erent Ws is used
as the reference two-particle distribution P0(Q).

Unlike-sign two-particle distributions are generally strongly inuenced by decays such
as � into �+���0 or �+��, or ! into �+���0. However, in the present case, when the
pions come from di�erent Ws, the unlike-sign two-particle distribution may represent an
ideal reference, provided colour reconnection e�ects are not large. This is because, in the
absence of colour reconnection, it should be identical to the like-sign distribution except
for Bose-Einstein correlation e�ects, and should not contain pairs from decays of particles
or resonances.

To obtain the two-particle Q distribution for pairs of pions coming from di�erent Ws,
the following procedure was used. The Q distribution for pion pairs was obtained for
e+e�!W+W� events with fully hadronic decays, i.e. events where both Ws decay into
two quark jets. This distribution is the sum of the distribution of pion pairs coming from
the same W and that of pion pairs coming from di�erent Ws. The contribution of pairs
coming from the same W was subtracted statistically, using the Q distribution obtained
from e+e�!W+W� events in which one W decays into two quarks and the other one into
lepton plus neutrino. The same procedure was followed for both like-sign and unlike-sign
pion pairs to obtain P (Q) and P0(Q), respectively.

The detector e�ects on the analysis were estimated using samples of WW and back-
ground events generated with PYTHIA 5:7 [10] with the fragmentation tuned to the
DELPHI data at LEP1 [11]. The generated events were passed through the full detector
simulation program DELSIM [8].

3 Particle and Event Selections

The track and event selections, which are described below, were similar to those in
[12].

3.1 Particle Selection

The DELPHI detector and its performance have been described in [7,8]. The analysis
relied on the information provided by the tracking detectors: the Micro-vertex Detector,
the Inner Detector, the Time Projection Chamber as main tracking detector, the Outer
Detector, the Forward Chambers and the Muon Chambers. Neutral particles were de-
tected from their electro-magnetic showers in the High density Projection Chamber, the
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Forward Electro-Magnetic Chambers and the luminosity monitor, STIC; neutral hadronic
showers were measured in the instrumented iron return yoke of the solenoidal magnet.

All charged particles except those tagged as hard leptons in semileptonic events were
taken to be pions. Charged particles were selected if they ful�lled the following criteria :

� polar angle between 10� and 170�;
� momentum greater than 0.1 GeV/c and smaller than the beam momentum;
� good quality, assessed as follows:

{ track length greater than 15 cm;
{ impact parameters with respect to the nominal interaction point less than 4 cm
(transverse and longitudinal with respect to the beam direction);

{ error on momentum measurement less than 100%.

For neutral particles the following selection criteria were applied :

� energy of the electromagnetic or hadron shower greater than 0.5 GeV;
� additional requirements on shower quality, assessed as follows:

{ showers in the STIC must have deposits in more than one cell;
{ showers in the hadron calorimeter must have an error in the energy of less than
100%.

Electron identi�cation was performed in the polar angle range between 20� and 160�

by looking for characteristic energy deposition in the central and forward/backward elec-
tromagnetic calorimeters and demanding an energy-to-momentum ratio consistent with
unity. For this polar angle range the identi�cation e�ciency for high momentumelectrons
was determined from simulation to be (77 � 2)%, in good agreement with the e�ciency
determined using Bhabha events measured in the detector.

Tracks were identi�ed as due to muons if they had at least one associated hit in the
muon chambers, or an energy deposition in the hadronic calorimeter consistent with a
minimum ionizing particle. Muon identi�cation was performed in the polar angle range
between 10� and 170�. Within this acceptance, the identi�cation e�ciency was deter-
mined from simulation to be (92 � 1)%. Good agreement was found between data and
simulation for high momentummuons in Z! �+�� decays, and for low momentumpairs
produced in  reactions.

3.2 Event Selection for Fully Hadronic Final States

The event selection criteria were optimised in order to ensure that the �nal state was
purely hadronic and in order to reduce the residual background, for which the dominant
contribution is radiative q�q production, e+e� ! q�q(), especially the radiative return to
the Z peak, e+e� ! Z ! q�q.

Only events where the value of the thrust was less than 0.9 were considered. For each
event passing the above criteria, all particles were clustered into jets using the LUCLUS
algorithm [13] with the resolution parameter djoin = 6:5 GeV=c. At least four jets were
required, with more than three particles in each jet.

Events from the radiative return to the Z peak were rejected by requiring the e�ective
centre-of-mass energy of the e+e� annihilation to be larger than 115 GeV. The e�ective
energy was estimated using either the recoil mass calculated from one or two isolated
photons measured in the detector or, in the absence of such a photon, by forcing a 2-jet
interpretation of the event and assuming that a photon had been emitted collinear to the
beam line.
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Events were then forced into a four-jet con�guration. The four-vectors of the jets
were used in a kinematic �t, which imposed conservation of energy and momentum and
equality of masses of two pairs of jets. Events were used only if at least one of the three
possible pairings of jets had a �t probability larger than 2%. The distribution of the
�tted mass of the two jets for all those combinations is shown in Fig. 1a, together with
the background contribution and the combined expected distribution of the signal and
background. The �nal cut to select WW events was the requirement of a �tted mass
larger than 75 GeV/c2 for at least one retained combination.

From a data sample corresponding to an integrated luminosity of 10 pb�1, 24 events
were selected. The purity of the selection, estimated using simulated events, was 90%.

3.3 Event Selection for Mixed Hadronic and Leptonic Final

States

Events in which one W decays into lepton plus neutrino and the other one into quarks
are characterized by two hadronic jets, one energetic isolated charged lepton, and missing
momentum resulting from the neutrino. The main backgrounds to these events are radia-
tive q�q production and four-fermion �nal states containing two quarks and two charged
leptons of the same avour.

Events were selected by requiring six or more charged particles and a missing mo-
mentum of more than 10% of the total centre-of-mass energy. Electron and muon tags
were applied to the events. In q�q() events, the selected lepton candidates are either
leptons produced in heavy quark decays or misidenti�ed hadrons, which generally have
rather low momenta and small angles with respect to their quark jets. The momentum of
the selected muon, or the energy deposited in the electromagnetic calorimeters by the se-
lected electron, was required to be greater than 20 GeV. The energy not associated to the
lepton, but assigned instead to other charged or neutral particles in a cone of 10� around
the lepton, is a useful measure of the lepton's isolation; this energy was required to be
less than 5 GeV for both muons and electrons. In addition, the isolation angle between
the lepton and the nearest charged particle with a momentum greater than 1 GeV/c
was required to be larger than 10�. If more than one identi�ed lepton passed these cuts,
the one with highest momentum was considered to be the lepton candidate from the W
decay. The angle between the lepton and the missing momentum vector was required to
be greater than 70�. All the other particles were forced into two jets using the LUCLUS
algorithm [13]. Both jets had to contain more than two charged particles.

Further suppression of the radiative q�q background was achieved by looking for evi-
dence of an ISR (Initial State Radiation) photon. Events were removed if there was a
cluster with energy deposition greater than 20 GeV in the electromagnetic calorimeters,
not associated with a charged particle. Events with ISR photons at small polar angles,
where they would be lost inside the beam pipe, were suppressed by requiring the polar
angle of the missing momentum vector to satisfy j cos �missj < 0:94.

The four-fermion neutral current background was reduced by applying additional cuts
to events in which a second lepton of the same avour as the �rst was detected. Such
events were rejected if the energy in a cone of 10� around the second lepton direction was
greater than 5 GeV.

If no lepton was identi�ed, the most energetic particle which formed an angle greater
than 25� with all other charged particles was considered as a lepton candidate; this
recovered some unidenti�ed leptons and some additional W! ��� decays. In this case
the lepton was required to have a momentum greater than 20 GeV/c, as before, but
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tighter cuts were applied to the amount of missing momentum (greater than 20 GeV/c)
and to its polar angle (j cos �missj < 0:85).

A kinematical �t was performed on the selected events. The four-vectors of the two
jets and of the lepton were used in the �t, which imposed conservation of energy and
momentum and equality of the masses of the two-jet system and the lepton-neutrino
system, attributing the missing momentum of the event to the undetected neutrino.
Events were used only if the �t probability was larger than 0.1%. The distribution of the
�tted mass for these events is shown in Fig. 1b, together with the background contribution
and combined expected signal and background distribution. The �nal cut, as in the case
of fully hadronic �nal states, was that the �tted mass of the two-jet system had to be
larger than 75 GeV.

From the data sample corresponding to an integrated luminosity of 10 pb�1, 25 events
were selected. The purity of the selection, estimated using simulated events, was about
98%.

4 Results

Fig. 2a shows the like-sign (����) Q-spectrum for fully hadronic �nal states (open
circles) and for mixed hadronic and leptonic �nal states (closed circles). The Q distribu-
tions for unlike-sign (�+��) pairs for both samples are shown in Fig. 2b. The Q-spectra
shown for the mixed decay channel have been normalized to the number of hadronically
decaying W candidates in the fully hadronic sample.

For both the like-sign and unlike-sign pion pairs, the maxima of the spectra occur at
larger Q values for the fully hadronic decays than for the mixed decays, since two pions
from di�erent Ws are less likely to have a small Q value.

To obtain distributions for pion pairs coming from di�erent Ws, the normalised Q
distributions of the mixed sample were subtracted from those for the fully hadronic sam-
ple, both for the like-sign pairs and for the unlike-sign pairs. The resulting distributions
are shown in Fig. 3. In this �gure, no excess of like-sign pairs over unlike-sign pairs is
observed. The ratio of like-sign to unlike-sign pairs, R(Q), is shown in Fig. 4.

Since no enhancement of the correlation function is observed at low Q values, the para-
meter r in eq. (3) is not well de�ned. The �t to the correlation function with expression
(3) was therefore performed with a �xed value of r=0.5 fm, as measured in Z0 decays [5].
The �t yielded the value:

� = �0:20 � 0:22 (stat) (4)

with �2 = 14 for 14 degrees of freedom. This �t is shown by the solid curve in Fig. 4.
At the present level of statistics, no evidence is observed for Bose-Einstein correlations
between pions from di�erent Ws.

In Monte-Carlo events with full detector simulation, the contamination of like-sign
particle pairs where at least one particle is not a pion is about 18% for the interval
Q <0.5 GeV/c2. Correcting for this e�ect with the same methodology as in [14] would
change the value of � by about �0:04. As this correction is much less than the statistical
error on �, the parameter value (4) obtained from the �t is used in the following analysis
without correcting for this e�ect.

It has been shown [5] that using the unlike-sign two-particle distributions as reference
distribution for Bose-Einstein correlation studies for particles from the decay of the Z0

yields values for the measured Bose-Einstein parameters which depend strongly on the
inuence of resonance decays. Therefore, in order to study the correlations between
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particles from the same W in the two-jet sample, the same methodology as in [5] was
used, i.e. the event mixing technique. The values of � and r obtained were compatible
with those found at the Z0y.

To estimate the systematic errors on � in (4), the following procedures were used:

{ The selected hadronically decaying WW candidate events contain about 10% back-
ground. If the value of � for the background events was about 0.3, as measured at
the Z0 [14,15], the presence of Bose-Einstein correlations in the background events
would have changed the � value obtained in (4) by +0:06. To estimate any other
possible inuences of background events, the background contamination estimated
from simulation without Bose-Einstein correlations was subtracted from the exper-
imental Q distributions and the analysis was repeated. The change in the value of
� was negligible. Consequently, the systematic error due to background events was
taken to be ��=�0:06.

{ The distribution of R(Q) for simulated events, without Bose-Einstein correlations
included, was obtained in exactly the same way as that from the data (this is shown
in Fig. 4 as open points). R(Q) for the data was divided by R(Q) of these simulated
events, in order to take into account possible detector e�ects and any correlations
which are not due to Bose-Einstein correlations, and the �t to eq. (3) was repeated.
The deviation of � from the value (4) was used as the estimate of the systematic
error from this source, ��=�0:04.

{ Cuts on the charged particle multiplicity were applied to the fully hadronic and
leptonic selected events in order to estimate possible uncertainties due to the inu-
ence of the events with the lowest or highest multiplicity. The uncertainty from this
source was estimated to be �0:03.

{ To estimate the inuence of �nal state Coulomb interactions, a correction by the
Gamow factor [18] was applied to R(Q). This increased � by 0.03. However, it
has been suggested [19] that the Gamow factor overestimates the size of the �nal
state Coulomb interaction. Hence it was decided not to correct the � parameter for
Coulomb interactions, but to include a systematic error of �0:03 on � due to this
source.

Adding all contributions in quadrature gave the �nal result (for r �xed to 0.5 fm):

� = �0:20 � 0:22 (stat)� 0:08 (syst). (5)

5 Discussion

In addition to the data points, Fig. 4 also shows R(Q) distributions predicted using
WW events generated by PYTHIA.

When no Bose-Einstein e�ects are included, the correlation function R(Q) is found to
be equal to one within errors in the whole Q-region presented, in good agreement with
the data. This is true for events passed through the full detector simulation and analysed
in the same way as the data (open circles), and also if R(Q) is obtained using only fully
hadronically decaying WW events and considering only pairs of pions from di�erent Ws
(not shown). It is also true if R(Q) is extracted in the same two ways at generator level
(also not shown).

y
The �tted values were �=0.63�0.23 and r=0.55�0.11 fm. The corresponding values obtained by ALEPH [14] and

DELPHI [15] at the Z
0
using the same method (mixed-event reference sample) were �=0.40�0.02 and r=0.50�0.02 fm and

�=0.35�0.04 and r=0.42�0.04 fm, respectively. At the Z
0
, using unlike-sign pairs for the reference sample has typically

given larger values of both � and r [14{16].
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Bose-Einstein correlations can be included in PYTHIA by using the LUBOEI code,
where they are introduced as a �nal state interaction [17]. After the generation of the pion
momenta, the values generated for all identical pions are modi�ed by an algorithm that
reduces their momentum vector di�erences. This procedure violates energy-momentum
conservation. Finally, rescaling is therefore applied to restore the total energy and mo-
mentum. This code has been shown [5] to reproduce the two-particle correlations mea-
sured in Z0 decays well if Bose-Einstein correlations are switched on with a Gaussian
parametrization for pions that are produced either promptly or as decay products of
short-lived resonancesz and the parameter values � = 1 and r = 0:5 fm are usedx. The
value �=1 for direct pions corresponds to � � 0:4 for all pions or � � 0:3 for all parti-
cles [14,15].

The same algorithm with the same values of � and r was applied to the generated
WW events to calculate predictions for the case where Bose-Einstein correlations are
present. The R(Q) distributions for pions from di�erent Ws for generated events were
again obtained in the same two ways as before, i.e. (a) directly, by using only the fully
hadronic decay channel and considering only pairs of pions coming from di�erent Ws, and
(b) using the di�erence between the distributions for fully hadronic and mixed hadronic
and leptonic decay channels, as done for the data. The shaded area in Fig. 4 represents
the area between the R(Q) distributions obtained in these two ways. In the low-Q region,
procedure (a) gave the lower values of R(Q), and the R(Q) distribution for fully simulated
events was again consistent with that obtained at generator level.

Fig. 4 also shows curves obtained by �tting the R(Q) for like-sign particles measured
by DELPHI [5] and ALEPH [14] at the Z0 using the event mixing technique (dashed and
dotted curves, respectively). These R(Q) distributions measured in Z0 decays show a
clear enhancement in the low-Q region. The statistical errors are negligible.

The R(Q) distribution for like-sign pions from di�erent Ws (closed circles in Fig. 4) in
the low-Q region is systematically below the predictions including Bose-Einstein e�ects
and the �ts to Z0 data, and does not show any enhancement. However, at this level of
statistics no conclusion can yet be drawn.

6 Summary

The �rst measurement of the correlation function for like-sign particles arising from
di�erent Ws is reported, using unlike-sign particles as a reference. The Q distributions
of pion pairs from di�erent Ws, both for like-sign and for unlike-sign combinations, were
obtained statistically, as the di�erence between (a) the distribution for all combinations
in fully hadronically decaying WW (four jet) events and (b) the appropriately normalized
distribution for events where one of the Ws decays leptonically (two jet, lepton, neutrino
events). Interpreting this di�erence in the above terms assumes that colour reconnection
e�ects are not too large. At the present level of statistical precision, no enhancement of
the correlation function is observed at small Q values. Fixing the value of the radius r
at 0.5 fm, the Bose-Einstein correlation strength is found to be

� = �0:20 � 0:22 (stat)� 0:08 (syst): (6)

z
Resonances with longer lifetime than the K�

(890) were considered long-lived.

x
The measured values of the parameters for such `direct' pions in Z

0
decays were � = 1:06�0:17, r = 0:49�0:05 fm [5].



8

Acknowledgments

We thank T. Sj�ostrand for very useful discussions. We are greatly indebted to our
technical collaborators and to the funding agencies for their support in building and
operating the DELPHI detector, and to the members of the CERN-SL Division for the
excellent performance of the LEP collider.

References

[1] B. Andersson, G. Gustafson, G. Ingelman and T. Sj�ostrand, Phys. Rep. 97 (1983)
243;
B.R. Webber, Nucl. Phys. B238 (1984) 492.

[2] A. Tomaradze, Results on Bose-Einstein correlations, Proc. 7th Intern. Workshop
on Multiparticle Production \Correlations and Fluctuations", Nijmegen 1996, eds.
R.C. Hwa et al., WSPC, Singapore, 1997, p. 34;
B. L�orstad, Int. J. Mod. Phys. A4 (1989) 2861;
S. Haywood, Where are we going with Bose{Einstein { A mini review, RAL Report
94-074.

[3] L. L�onnblad and T. Sj�ostrand, Phys. Lett. B351 (1995) 293.
[4] P.D. Acton et al. (OPAL Coll.), Z. Phys. C56 (1992) 521;

P. Abreu et al. (DELPHI Coll.), Z. Phys. C65 (1995) 587.
[5] P. Abreu et al. (DELPHI Coll.), Z. Phys. C63 (1994) 17.
[6] G. La�erty, Z. Phys. C60 (1993) 659;
[7] P. Aarnio et al. (DELPHI Coll.), Nucl. Instr. & Meth. A303 (1991) 233.
[8] P. Abreu et al. (DELPHI Coll), Nucl. Instr. & Meth. A378 (1996) 57.
[9] E.A. De Wolf, I. Dremin and W. Kittel, Phys. Reports 270 (1996) 1.
[10] T. Sj�ostrand, Comp. Phys. Comm. 82 (1994) 74.
[11] P. Abreu et al. (DELPHI Coll.), Z. Phys. C73 (1996) 11.
[12] P. Abreu et al. (DELPHI Coll.),Measurement and interpretation of the W-pair cross-

section in e+e� interactions at 161 GeV, CERN-PPE 97-09, to appear in Phys. Lett.
B.

[13] T. Sj�ostrand, PYTHIA 5.7 / JETSET 7.4, CERN-TH.7112/93 (1993).
[14] D. Decamp et al. (ALEPH Coll.), Z. Phys. C54 (1992) 75.
[15] P. Abreu et al. (DELPHI Coll.), Phys. Lett. B286 (1992) 201
[16] G. Alexander et al., (OPAL Coll.), Z. Phys. C72 (1996) 389.
[17] T. Sj�ostrand, Comp. Phys. Comm. 27 (1982) 243; ibid. 28 (1983) 229;

T. Sj�ostrand and M. Bengtsson, Comp. Phys. Comm. 43 (1987) 367.
[18] M. Gyulassy, S.K. Kaufmann and L.W. Wilson, Phys. Rev. C20 (1979) 2267.
[19] M.G. Bowler, Phys. Lett. B270 (1991) 69.



9

Figure 1: Reconstructed W mass distribution obtained from the kinematic �t described
in the text for (a) fully hadronic (4-jet) �nal states and (b) mixed hadronic and leptonic
(jet-jet-lepton-neutrino) �nal states. For fully hadronic (4-jet) �nal states all combi-
nations are plotted for which the �t probability was larger than 2%. The shaded areas

represent the background contributions (negligible for mixed �nal states). The histograms

are the sum of the expected signal and background.
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Figure 2: Q distributions for like-sign (a) and unlike-sign (b) pairs for fully hadronic
�nal states (open circles) and mixed hadronic and leptonic �nal states (closed circles).
The Q distributions for the mixed decay channel have been normalized to the number of
selected hadronically decaying W candidates present in the fully hadronic channel (see
text).
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Figure 3: Q distributions for like-sign (closed circles) and unlike-sign (open circles) pairs
for pions arising from di�erent Ws.
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Figure 4: The correlation function R(Q) for like-sign particles arising from di�erent Ws
for data (closed circles) and simulated events without Bose-Einstein symmetrization (open
circles). The shaded area represents the model prediction for events with Bose-Einstein
symmetrization (see text). The solid curve shows the result of the �t using equation
(3). The dashed and dotted curves are results of �ts to R(Q) distributions for like-sign
particles measured in Z0 decays.


