Pré-Publication, Document De Travail Année : 2024

A probabilistic representation of the solution to a 1D evolution equation in a medium with negative index

Eric Bonnetier
  • Fonction : Auteur
Pierre Etoré
  • Fonction : Auteur
  • PersonId : 1039251
  • IdRef : 112858562

Résumé

In this work we investigate a 1D evolution equation involving a divergence form operator where the diffusion coefficient inside the divergence is changing sign, as in models for metamaterials.We focus on the construction of a fundamental solution for the evolution equation,which does not proceed as in the case of standard parabolic PDE's, since the associatedsecond order operator is not elliptic. We show that a spectral representation of the semigroup associated to the equation can be derived, which leads to a first expression of the fundamental solution. We also derive a probabilistic representation in terms of a pseudo Skew Brownian Motion (SBM).This construction generalizes that derived from the killed SBM when the diffusion coefficientis piecewise constant but remains positive.We show that the pseudo SBM can be approached by a rescaled pseudo asymmetric random walk,which allows us to derive several numerical schemes for the resolution of the PDEand we report the associated numerical test results.
Fichier principal
Vignette du fichier
sign-changing1-20230112.pdf (695.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03687817 , version 1 (07-06-2022)
hal-03687817 , version 2 (04-01-2024)

Identifiants

Citer

Eric Bonnetier, Pierre Etoré, Miguel Martinez. A probabilistic representation of the solution to a 1D evolution equation in a medium with negative index. 2024. ⟨hal-03687817v2⟩
120 Consultations
154 Téléchargements

Altmetric

Partager

More