The Impact of Compressed Femtosecond Laser Pulse Durations on Neuronal Tissue Used for Two-Photon Excitation Through an Endoscope
Abstract
Accurate intraoperative tumour margin assessment is a major challenge in neurooncology, where sparse tumours beyond the bulk tumour are left undetected under conventional resection. Non-linear optical imaging can diagnose tissue at the sub-micron level and provide functional label-free histopathology in vivo. For this reason, a non-linear endomicroscope is being developed to characterize brain tissue intraoperatively based on multiple endogenous optical contrasts such as spectrally- and temporally-resolved fluorescence. To produce highly sensitive optical signatures that are specific to a given tissue type, short femtosecond pulsed lasers are required for efficient two-photon excitation. Yet, the potential of causing bio-damage has not been studied on neuronal tissue. Therefore, as a prerequisite to clinically testing the non-linear endomicroscope in vivo, the effect of short laser pulse durations (40-340 fs) on ex vivo brain tissue was investigated by monitoring the intensity, the spectral, and the lifetime properties of endogenous fluorophores under 800 and 890 nm two-photon excitation using a bi-modal non-linear endoscope. These properties were also validated by imaging samples on a benchtop multiphoton microscope. Our results show that under a constant mean laser power, excitation pulses as short as 40 fs do not negatively alter the biochemical/ biophysical properties of tissue even for prolonged irradiation.
Domains
Physics [physics]Origin | Publication funded by an institution |
---|